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Combining geometrical and dynamical disorder to enhance transport
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We look for the optimal way to distribute rectifiers in order to maximize their effect on the transport
properties of Brownian particles. These rectifiers are introduced in the form of flashing asymmetric potentials
distributed on a one dimensional lattice. We study the effects that different distributions of these rectifiers have
on the generated current and on the energy cost of transport. Based on both analytical and numerical results, we
observe an unexpected increase in the efficiency of the rectifiers and the magnitude of the current for the case
in which geometrical and dynamical disorder are combined. We show that this effect is a direct consequence of
the “hitchhiker” or “waiting time” paradox.
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I. INTRODUCTION tered with a concentratione (0,1). Our rectifiers ardlash-

The subject of rectification of fluctuations has been extenind asymmetric potentials, each one consisting of an infinite
sively studied in the recent past, mainly due to its potentia}Ne” next to an infinite barrier. Figure 1 shows the potentials
applications in biology and nanotechnolody?]. Pumps and ~ and the hopping probabilities used in our system. It is impor-
motors within the cell seem to work not only in spite of the tant to mention that nonflashing asymmetric potentials have
thermal fluctuations affecting proteins and organelles, bubeen extensively used in the theory of surface growth in
also profiting from these fluctuations by means of rectifiersstepped surfaces and are called Ehrlich-Schwo@b®) po-

[3]. A large family of models of Brownian ratchets has beententials[6—9]. The ES potentials have also been introduced
introduced to obtain some insight into the basic mechanismin the context ottellular media These media consist of con-

of noise rectificatior{1]. In addition, several models for col- secutive finite cells separated by permeable Wl and
lective rectifiers or Brownian motors have been proposethave been identified with multiple materials, ranging from
recently, most of them built from single Brownian ratchetspiological tissues to the aforementioned stepped surfaces.
coupled mechanically, via elastic or rigid interactidds5].  Nonflashing finite ES potentials have also been used to study
The reason is thaénsembleof rectifiers working collec-  (ectification in the presence of an external ki

tiyely .need to be considered for the .description of certa}in If the rectifiers in our system were permanently in place, a
biological systems, such as muscle tissue, and for possibigyticle could move only within one cell. To achieve rectifi-
designs of some nanodevices. _cation, we have tflashour ES potentials. With this in mind,

We consider another aspect of ensembles of rectifiers ig,, gs potentials stay in place fer-1 units of time; then
this article; namely, the purpose of this paper is to study thgney all disappear for one unit of time. The process of having
influence of the spatial distribution of rectifiers on their abil- e potentials in place for—1 units of time immediately
ity to transport Brownian particles. In particular, suppose Wergliowed by their disappearance for one unit of time is re-
have at our disposal a given number of rectifiers and we arEeated continuously according to the following four different
asked to distribute them along a line in order to transporgcenarios.
particles in the most efficient way. We show that paradoxi- (1) periodic distribution: the ES potentials are equally
cally, under certain conditions, the best performing scenarigjistributed and they reappear in the same places.

corresponds to the case when we combine dynamical and () spatial disorderithe ES potentials are randomly dis-
geometrical disorder.

This paper is organized as follows. Section Il describes
the model we propose to study rectification of fluctuations.
Section Il describes the mathematical details of our calcula-
tions and compares those results to our Monte Carlo simula-
tions. Section IV summarizes our findings.

Il. MODEL

Our system consists of particles describing a random walk
on a one dimensional lattice, where rectifiers have been scat-

FIG. 1. Two Ehrlich-Schwoebel potentials confining Brownian
* Author to whom correspondence should be addressed. Electronjsarticles within a cell. The hopping probabilities are indicated over
address: leoh@cali.csudh.edu the arrows.
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1 FIG. 3. Results from Monte Carlo simulations for the different
scenarios. We have plotted the average particle cuf@ns the

period(7) for a concentration of ES potentiats=0.2.
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FIG. 2. Schematic representation of the time evolution for the®f € andis explored. Periodic boundary conditions are used
different scenarios used in this paper. “Normal” symmetric poten{0 Simulate an infinite lattice. Notice that wher 1 the sys-
tials replace the ES potentials for one unit of time after everytem effectively has no ES potentials for any valuecofrhe
7-1 units of time. In this figure, the concentration of rectifiers is results of the simulations witb=0.2 are shown in Fig. 3.
¢=0.2 for the periodic and temporal scenarios, yielding a spatial AS can be seen, all the plots in Fig. 3 show a maximum in

period|=5. the current for a specific value af This can be understood
by focusing on the two limits of. Whenr is small, the cell's
tributed and they reappear in the same places. !ife_time is too short for_the.particle to reach the ES wgl_l
(3) Temporal disorderthe ES potentials are equally dis- |nS|d9 the cgll. The particle is bargly affected by the rectifi-
tributed and they reappear in different places. ers, its motion is almost symmetrical, and the current van-

(4) Spatiotemporal disorderthe ES potentials are ran- iShes. On the other hand, for largea particle spends too
domly distributed and they reappear in random places. ~ Much time trapped at the bottom of the ES wells, which also

We refer to scenario 1 as having no disorder, scenario 2 48hibits its motion in one direction. In other words, there is
having geometrical disorder only, scenario 3 as having dyn® rectification forr=1 or 7— oo, but there is rectification for
namical disorder only, and scenario 4 as having both geghtérmediate values of. ,
metrical and dynamical disorder. A schematic representation e can also see that for short valuesrdshort cell life-
of the different scenarios is shown in Fig. 2. time), the highest current corresponds to the most ordered

We create the spatial and spatiotemporal distributions b ase(periodig. However, this behavior quickly changes and
assigning ES potentials on the lattice with a probabitier he scenario that combines geometrical and dynamical disor-

LT . . er (spatiotemporalexhibits the largest current. We offer an
site.|=1/c s the average distance between two ES wells anéimalytical description for this unexpected behavior in the re-

1-1 the average length of a cell. In the periodic and temporanainder of this paper.

scenarios]=1/c (which must be an integer numbes the The models we proposed can be solved analytically for
distance between two consecutive ES wells, whereas thgrge 7. In this limit, we can assume that by the end of each
length of a cell isl - 1. period 7 particles reach the corresponding ES wells with

probability 1 for all scenarios. Equatiqi) becomes
Ill. ANALYTICAL RESULTS AND SIMULATIONS

(2)

SR

Our main goal is to study the current of Brownian par- J=
ticles in our four different scenarios. The quantity of central

interest to us is the average particle current whered is the average distance covered by a particle in one

(X)) period.
J :!ET;T (1) We start by discussing the periodic scenario. In this case,
a particle has two equal possibilities of motion as the barriers
We have performed Monte Carlo simulations for thesedisappear. The first option is to jump left, thus remaining
four scenarios to measure the currdras a function of the within the same cell once the barriers reappear and covering
period 7. The simulations consist of particles moving undera zero net distance in the following period of time The
the rules described above. Each trajectory consists of 3econd possibility carries the particle to the right into the
X 10* units of time. A total of 18 trajectories for a selection next cell so that the net distance covered by the partidle is
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Therefore, the average distance covered by the particle iather three distributions of rectifiers. The following is our
one period is explanation of this result.
In the periodic and spatial scenarios, the particle either
— 1 1 . L
dy=-==. (3)  staysin the same cell or moves to the beginning of the next
2 2 cell. It covers either no distance or the average cell length,
espectively. Hence, the average distance covered by a par-
icle for smallc and larger is half of the cell lengtlisee Egs.
) and (4)].
On the other hand, when dynamical disorder is intro-

In the spatial scenario, when the asymmetric potential%
are randomly distributed and reappear in the same place,
particle also has two equal possibilities of motion as the
barriers disappear. If a particle moves right it covers the . ) . .
lengthl of the next cell to the right. If the particle jumps left, duceq, th_e particle always finds itself in a new c_eII. Then the
it remains in the same cell and covers a net distance of zer uestion is how ”.‘“Ch of that cell the particle will cover on
in the following period of time. However, this is no longer taerti?:\I/:?c?\?érssoﬁ E[Lrj]renzvoeurg fgr ggﬁ (t)efTr[]):rcilalffeennago the
true if the cell’s size is equal to one lattice site. In this par—p : ge, 510,

ticular case, the particle moves back to the next cell to th%i)\]/éghg;eﬁ]se Ej\setrgeesgﬁgoetﬁmgoég:l IS;?”‘;”OG the particle
left and the net motion is —1. This situation occurs with a : ge, idth. (6)].

probability p,, which is difficult to assess. The probability of :!'his_ _unexpe(ited result can be re_zlated to the “hit_chhiker”
having a cell of size 1 is, but the probability obeingin a or "waiting time” paradox[11] affecting a person trying to

cll of sz 113 grester an T i because he concen- XD & e fom cars avelng on oad Accordng o i
tration of particles is larger in zones of the lattice where ther hat road corresnonds to a Poisson process with an ex %nen-
are several consecutive cells of size 1. We will neglect th P p = P

effect that these zones have on reducing the net current Bl distribution, then the average waiting tirdéor a person

taking p, = c. With this additional approximation, the particle arriving at random is equal to the average time inteiwal

covers an average distance with probability 1/2 in the first Petween cars. This result is paradoxical, because we should

option, while it covers an average distaricen the second expect the average waiting tingeto be half of the mean

option. Then, intervals between cars. However, only when the cars pass by
l—c 1-c2 the hitchhiker separated by equal time intervgteriodi-

ds=—= (4) cally), i.e.,sis constant, is the average waiting timiéndeed
2 2¢ half of the mean interva, as intuitively expected. The effect
For the temporal scenario, once the barriers reappear, thé the same between our spatiotemporal and temporal sce-
next ES well is located to the right of the particle and can beharios if we interpret the arrival of cars as ES potentials
in any site at a distance ranging from zerd +dl, with equal ~ (separating cells of lengtis=I-1) and the arrival of the
probability 1/1. Since the average displacement in the firsthitchhiker as the position of the particle when the ES poten-

move is zero, then tials reappear.
1 To ascertain the validity of our analysis, we compare the
— <k _1-c analytical results we obtained for the currefigs. (7)]
o= ST 2c (5 against our Monte Carlo simulations for a concentration of

ES potentials=0.2. Figure 4 shows an excellent agreement
Finally, for the spatiotemporal case, the average displacesetween theory and simulations, which starts=at0 for the
ment when there are no barriers is also zero. After the barriperiodic and temporal cases and =t 1500 for the spa-
ers reappear a particle moves to the right until it finds the ES ,,

well. The probability to have an ES well at a sitecighere- 1=
fore the average displacement is R |
[ 1 e sl s Spatiotemporal i
dst:EkC(l—C)k:__ (6) ...............
k=0 c _

Using Egs(3)«6) and Eq.(2) we obtain the correspond- - o0.002
ing current for larger in each scenario:

3 1 ] 1-c? -

P 5 s = ) 0L~ Spatial
21C 21C | Temporal |
1-c 1-c L . . . . . . . .

J= 27'C_' Jst= < (7) fo00 1500 2000

Notice the factor 1/2 present in all the expressions except FIG. 4. Comparison between analytical results using Egjs.
in the spatiotemporal disorder. This is the main result of thigsolid lineg and Monte Carlo simulation&oty. We have plotted
paper: for smallc and larger, the current obtained for the the average current vs 7 for a concentration of ES potentiats
spatiotemporal disorder @doublethe current obtained for the =0.2.
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4 EEELL T T p e RIS excellent match between this approximation and our simula-
tions for all scenarios whem=2000 (and as early as for
~100 for the periodic and temporal scenayioShe effi-

3 Spatiotemporal _ ciency for the spatiotemporal scenario is the smallest for
short values ofr but it quickly becomes the largest as
becomes larger. The efficiency for this scenario is exactly
twice that for the temporal disorder. Also, from E¢), (3),
and(5), we should expect the efficiency for the spatiotempo-
/ ral disorder to be twice as large as the efficiency for all the
Spatisl other scenarios for smatl and larger.

w2

IV. CONCLUSIONS

| We have shown that for low values ef(short cell life-
T e T T T o T T T e w00 time), the highest current and efficiency correspond to what
’ we consider to be the most ordered cgsriodio. However,

FIG. 5. The efficiency per load vs 7 for a concentration of ES this behavior Changes rapidly, and the scenario that combines
potentialsc=0.2. Units of energy are such that the depth of the ESboth geometrical and dynamical disord@patiotemporal
wells isAV=1. exhibits the largest current and efficiency. Since the spa-
tiotemporal scenario combines the two types of disorder

tiotemporal disorder. We observe only a slight discrepancytudied in this paper, we consider this to be our most disor-
(approximately 5% for=2000) for the scenario with spatial deréd case. We have shown that the current and the effi-
disorder. This discrepancy is due to the possible presence GENCY are the largest for the spatiotemporal scenario, start-
several consecutive cells of length 1 as has already bedR9 @t relatively low values ofr (=100 for c=0.2). The
discussed above. spatiotemporal disorder case contains the ingredients needed

The other quantity we study in this article is the efficiency!0 Yield the maximum current of the four scenarios consid-
of the system. To define the efficiency, we need to realiz&red in this article. We have seen that the absence of dynami-
that our flashinglike ratchet works as a motor when there is §2! disorder reduces the effectiveness of the rectifiers be-
load forceF opposite to the direction of the curred(F). If ~ cause the particle has only a probability 1/2 to jump into the
the force is small enough, particles move against it, performf‘eXt cell. Also, we have observed that the absence of spatial

ing work equivalent t&=J(F) [12]. On the other hand, energy disorder in the tempora! scen_a_rio r_educes the average dis-
is introduced into the system each time we switch off the gdance covered by a particléwaiting time paradpj. Since
potentials. A particle trapped in an ES well will then effec- ©NlY in the spatiotemporal case does a particle cover the

tively increase its potential energy. For the dynamics of ouENtire average cell length in a periodand since no other

model we have assumed that the ES wells are infinite. NOV\P_OSS'bIe scenario would seem to achieve this more effi-

to have a finite input energy we need to consider finite gsienty, we havg arrived at the conjecture that our most dis-
wells with depthAV<KkT. The efficiency of the system for a ordered scenario should prove to be the most efficient way to
small loadE is ' distribute rectifiers in a one dimensional system. Finally,

most of our results could apply for other types of rectifiers.

i F(X(t))e ) x(t)o ® We have used a precise design of ES barriers as a combina-
n=lm —==— " = Im ==, tion of a trap and a reflecting barrier to explain the behavior
toe AV(W(D)E e AV(W(D))o of the current and efficiency. However, our arguments are

where (x(t))r and (w(t))r are the average distance coveredbased on the average spacing among rectifiers and the hitch-

and the average number of ES wells visited by the particle ifliker paradox and could be extended, with some modifica-
time t and for a loadF, respectively. Based on E¢g), we  tons, to different types of pumps and ratchets. Work in this

will focus on the efficiency per load;= 7/F. 1/e can be direction is in progress.
interpreted as the energy cost to transport a particle at zero
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