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We look for the optimal way to distribute rectifiers in order to maximize their effect on the transport
properties of Brownian particles. These rectifiers are introduced in the form of flashing asymmetric potentials
distributed on a one dimensional lattice. We study the effects that different distributions of these rectifiers have
on the generated current and on the energy cost of transport. Based on both analytical and numerical results, we
observe an unexpected increase in the efficiency of the rectifiers and the magnitude of the current for the case
in which geometrical and dynamical disorder are combined. We show that this effect is a direct consequence of
the “hitchhiker” or “waiting time” paradox.
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I. INTRODUCTION

The subject of rectification of fluctuations has been exten-
sively studied in the recent past, mainly due to its potential
applications in biology and nanotechnology[1,2]. Pumps and
motors within the cell seem to work not only in spite of the
thermal fluctuations affecting proteins and organelles, but
also profiting from these fluctuations by means of rectifiers
[3]. A large family of models of Brownian ratchets has been
introduced to obtain some insight into the basic mechanisms
of noise rectification[1]. In addition, several models for col-
lective rectifiers or Brownian motors have been proposed
recently, most of them built from single Brownian ratchets
coupled mechanically, via elastic or rigid interactions[4,5].
The reason is thatensemblesof rectifiers working collec-
tively need to be considered for the description of certain
biological systems, such as muscle tissue, and for possible
designs of some nanodevices.

We consider another aspect of ensembles of rectifiers in
this article; namely, the purpose of this paper is to study the
influence of the spatial distribution of rectifiers on their abil-
ity to transport Brownian particles. In particular, suppose we
have at our disposal a given number of rectifiers and we are
asked to distribute them along a line in order to transport
particles in the most efficient way. We show that paradoxi-
cally, under certain conditions, the best performing scenario
corresponds to the case when we combine dynamical and
geometrical disorder.

This paper is organized as follows. Section II describes
the model we propose to study rectification of fluctuations.
Section III describes the mathematical details of our calcula-
tions and compares those results to our Monte Carlo simula-
tions. Section IV summarizes our findings.

II. MODEL

Our system consists of particles describing a random walk
on a one dimensional lattice, where rectifiers have been scat-

tered with a concentrationcP s0,1d. Our rectifiers areflash-
ing asymmetric potentials, each one consisting of an infinite
well next to an infinite barrier. Figure 1 shows the potentials
and the hopping probabilities used in our system. It is impor-
tant to mention that nonflashing asymmetric potentials have
been extensively used in the theory of surface growth in
stepped surfaces and are called Ehrlich-Schwoebel(ES) po-
tentials[6–9]. The ES potentials have also been introduced
in the context ofcellular media. These media consist of con-
secutive finite cells separated by permeable walls[10] and
have been identified with multiple materials, ranging from
biological tissues to the aforementioned stepped surfaces.
Nonflashing finite ES potentials have also been used to study
rectification in the presence of an external bias[9].

If the rectifiers in our system were permanently in place, a
particle could move only within one cell. To achieve rectifi-
cation, we have toflashour ES potentials. With this in mind,
our ES potentials stay in place fort−1 units of time; then
they all disappear for one unit of time. The process of having
the potentials in place fort−1 units of time immediately
followed by their disappearance for one unit of time is re-
peated continuously according to the following four different
scenarios.

(1) Periodic distribution: the ES potentials are equally
distributed and they reappear in the same places.

(2) Spatial disorder:the ES potentials are randomly dis-
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FIG. 1. Two Ehrlich-Schwoebel potentials confining Brownian
particles within a cell. The hopping probabilities are indicated over
the arrows.
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tributed and they reappear in the same places.
(3) Temporal disorder:the ES potentials are equally dis-

tributed and they reappear in different places.
(4) Spatiotemporal disorder:the ES potentials are ran-

domly distributed and they reappear in random places.
We refer to scenario 1 as having no disorder, scenario 2 as

having geometrical disorder only, scenario 3 as having dy-
namical disorder only, and scenario 4 as having both geo-
metrical and dynamical disorder. A schematic representation
of the different scenarios is shown in Fig. 2.

We create the spatial and spatiotemporal distributions by
assigning ES potentials on the lattice with a probabilityc per

site. l̄ =1/c is the average distance between two ES wells and

l̄ −1 the average length of a cell. In the periodic and temporal
scenarios,l =1/c (which must be an integer number) is the
distance between two consecutive ES wells, whereas the
length of a cell isl −1.

III. ANALYTICAL RESULTS AND SIMULATIONS

Our main goal is to study the current of Brownian par-
ticles in our four different scenarios. The quantity of central
interest to us is the average particle current

J = lim
t→`

kxstdl
t

. s1d

We have performed Monte Carlo simulations for these
four scenarios to measure the currentJ as a function of the
periodt. The simulations consist of particles moving under
the rules described above. Each trajectory consists of 3
3104 units of time. A total of 105 trajectories for a selection

of c andt is explored. Periodic boundary conditions are used
to simulate an infinite lattice. Notice that whent=1 the sys-
tem effectively has no ES potentials for any value ofc. The
results of the simulations withc=0.2 are shown in Fig. 3.

As can be seen, all the plots in Fig. 3 show a maximum in
the current for a specific value oft. This can be understood
by focusing on the two limits oft. Whent is small, the cell’s
lifetime is too short for the particle to reach the ES well
inside the cell. The particle is barely affected by the rectifi-
ers, its motion is almost symmetrical, and the current van-
ishes. On the other hand, for larget, a particle spends too
much time trapped at the bottom of the ES wells, which also
inhibits its motion in one direction. In other words, there is
no rectification fort=1 ort→`, but there is rectification for
intermediate values oft.

We can also see that for short values oft (short cell life-
time), the highest current corresponds to the most ordered
case(periodic). However, this behavior quickly changes and
the scenario that combines geometrical and dynamical disor-
der (spatiotemporal) exhibits the largest current. We offer an
analytical description for this unexpected behavior in the re-
mainder of this paper.

The models we proposed can be solved analytically for
larget. In this limit, we can assume that by the end of each
period t particles reach the corresponding ES wells with
probability 1 for all scenarios. Equation(1) becomes

J =
d̄

t
, s2d

whered̄ is the average distance covered by a particle in one
period.

We start by discussing the periodic scenario. In this case,
a particle has two equal possibilities of motion as the barriers
disappear. The first option is to jump left, thus remaining
within the same cell once the barriers reappear and covering
a zero net distance in the following period of timet. The
second possibility carries the particle to the right into the
next cell so that the net distance covered by the particle isl.

FIG. 2. Schematic representation of the time evolution for the
different scenarios used in this paper. “Normal” symmetric poten-
tials replace the ES potentials for one unit of time after every
t−1 units of time. In this figure, the concentration of rectifiers is
c=0.2 for the periodic and temporal scenarios, yielding a spatial
period l =5.

FIG. 3. Results from Monte Carlo simulations for the different
scenarios. We have plotted the average particle currentsJd vs the
period std for a concentration of ES potentialsc=0.2.

H. L. MARTINEZ AND J. M. R. PARRONDO PHYSICAL REVIEW E70, 026113(2004)

026113-2



Therefore, the average distance covered by the particle in
one period is

d̄p =
l

2
=

1

2c
. s3d

In the spatial scenario, when the asymmetric potentials
are randomly distributed and reappear in the same place, a
particle also has two equal possibilities of motion as the
barriers disappear. If a particle moves right it covers the
lengthl of the next cell to the right. If the particle jumps left,
it remains in the same cell and covers a net distance of zero
in the following period of time. However, this is no longer
true if the cell’s size is equal to one lattice site. In this par-
ticular case, the particle moves back to the next cell to the
left and the net motion is −1. This situation occurs with a
probabilityp1, which is difficult to assess. The probability of
having a cell of size 1 isc, but the probability ofbeing in a
cell of size 1 is greater thanc. This is because the concen-
tration of particles is larger in zones of the lattice where there
are several consecutive cells of size 1. We will neglect the
effect that these zones have on reducing the net current by
takingp1.c. With this additional approximation, the particle
covers an average distance −c with probability 1/2 in the first
option, while it covers an average distancel in the second
option. Then,

d̄s =
l − c

2
=

1 − c2

2c
. s4d

For the temporal scenario, once the barriers reappear, the
next ES well is located to the right of the particle and can be
in any site at a distance ranging from zero tol −1, with equal
probability 1/l. Since the average displacement in the first
move is zero, then

d̄t = o
k=0

l−1
k

l
=

1 − c

2c
. s5d

Finally, for the spatiotemporal case, the average displace-
ment when there are no barriers is also zero. After the barri-
ers reappear a particle moves to the right until it finds the ES
well. The probability to have an ES well at a site isc; there-
fore the average displacement is

d̄st = o
k=0

`

kcs1 − cdk =
1 − c

c
. s6d

Using Eqs.(3)–(6) and Eq.(2) we obtain the correspond-
ing current for larget in each scenario:

Jp =
1

2tc
, Js =

1 − c2

2tc
,

Jt =
1 − c

2tc
, Jst =

1 − c

tc
. s7d

Notice the factor 1/2 present in all the expressions except
in the spatiotemporal disorder. This is the main result of this
paper: for smallc and larget, the current obtained for the
spatiotemporal disorder isdoublethe current obtained for the

other three distributions of rectifiers. The following is our
explanation of this result.

In the periodic and spatial scenarios, the particle either
stays in the same cell or moves to the beginning of the next
cell. It covers either no distance or the average cell length,
respectively. Hence, the average distance covered by a par-
ticle for smallc and larget is half of the cell length[see Eqs.
(3) and (4)].

On the other hand, when dynamical disorder is intro-
duced, the particle always finds itself in a new cell. Then the
question is how much of that cell the particle will cover on
the average. As it turns out, for the temporal scenario the
particle covers, on the average, half of the cell length[Eq.
(5)], whereas for the spatiotemporal scenario the particle
covers, on the average, the entire cell length[Eq. (6)].

This unexpected result can be related to the “hitchhiker”
or “waiting time” paradox[11] affecting a person trying to
obtain a ride from cars traveling on a road. According to this
paradox, if the interval of time between the cars traveling on
that road corresponds to a Poisson process with an exponen-

tial distribution, then the average waiting timed̄ for a person
arriving at random is equal to the average time intervals̄
between cars. This result is paradoxical, because we should

expect the average waiting timed̄ to be half of the mean
interval s̄ between cars. However, only when the cars pass by
the hitchhiker separated by equal time intervals(periodi-

cally), i.e.,s is constant, is the average waiting timed̄ indeed
half of the mean intervals, as intuitively expected. The effect
is the same between our spatiotemporal and temporal sce-
narios if we interpret the arrival of cars as ES potentials
(separating cells of lengths= l −1) and the arrival of the
hitchhiker as the position of the particle when the ES poten-
tials reappear.

To ascertain the validity of our analysis, we compare the
analytical results we obtained for the current[Eqs. (7)]
against our Monte Carlo simulations for a concentration of
ES potentialsc=0.2. Figure 4 shows an excellent agreement
between theory and simulations, which starts att<50 for the
periodic and temporal cases and att<1500 for the spa-

FIG. 4. Comparison between analytical results using Eqs.(7)
(solid lines) and Monte Carlo simulations(dots). We have plotted
the average currentJ vs t for a concentration of ES potentialsc
=0.2.
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tiotemporal disorder. We observe only a slight discrepancy
(approximately 5% fort=2000) for the scenario with spatial
disorder. This discrepancy is due to the possible presence of
several consecutive cells of length 1 as has already been
discussed above.

The other quantity we study in this article is the efficiency
of the system. To define the efficiency, we need to realize
that our flashinglike ratchet works as a motor when there is a
load forceF opposite to the direction of the currentJsFd. If
the force is small enough, particles move against it, perform-
ing work equivalent toFJsFd [12]. On the other hand, energy
is introduced into the system each time we switch off the ES
potentials. A particle trapped in an ES well will then effec-
tively increase its potential energy. For the dynamics of our
model we have assumed that the ES wells are infinite. Now,
to have a finite input energy we need to consider finite ES
wells with depthDV!kT. The efficiency of the system for a
small loadF is

h = lim
t→`

FkxstdlF

DVkwstdlF
. lim

t→`

kxstdl0

DVkwstdl0
F, s8d

where kxstdlF and kwstdlF are the average distance covered
and the average number of ES wells visited by the particle in
time t and for a loadF, respectively. Based on Eq.(8), we
will focus on the efficiency per load,«;h /F. 1 /« can be
interpreted as the energy cost to transport a particle at zero
load and per unit of length.

We have studied the efficiency« under the different sce-
narios described in this paper. The results of our Monte Carlo
simulations, forc=0.2 andDV=1, are shown in Fig. 5.

For very larget, the particle is assured of reaching an ES
potential in every periodt. Therefore, the number of wells

visited in nt is preciselyn, and «= d̄. We also obtain an

excellent match between this approximation and our simula-
tions for all scenarios whent=2000 (and as early as fort
<100 for the periodic and temporal scenarios). The effi-
ciency for the spatiotemporal scenario is the smallest for
short values oft but it quickly becomes the largest ast
becomes larger. The efficiency for this scenario is exactly
twice that for the temporal disorder. Also, from Eqs.(6), (3),
and(5), we should expect the efficiency for the spatiotempo-
ral disorder to be twice as large as the efficiency for all the
other scenarios for smallc and larget.

IV. CONCLUSIONS

We have shown that for low values oft (short cell life-
time), the highest current and efficiency correspond to what
we consider to be the most ordered case(periodic). However,
this behavior changes rapidly, and the scenario that combines
both geometrical and dynamical disorder(spatiotemporal)
exhibits the largest current and efficiency. Since the spa-
tiotemporal scenario combines the two types of disorder
studied in this paper, we consider this to be our most disor-
dered case. We have shown that the current and the effi-
ciency are the largest for the spatiotemporal scenario, start-
ing at relatively low values oft st<100 for c=0.2d. The
spatiotemporal disorder case contains the ingredients needed
to yield the maximum current of the four scenarios consid-
ered in this article. We have seen that the absence of dynami-
cal disorder reduces the effectiveness of the rectifiers be-
cause the particle has only a probability 1/2 to jump into the
next cell. Also, we have observed that the absence of spatial
disorder in the temporal scenario reduces the average dis-
tance covered by a particle(“waiting time” paradox). Since
only in the spatiotemporal case does a particle cover the
entire average cell length in a periodt, and since no other
possible scenario would seem to achieve this more effi-
ciently, we have arrived at the conjecture that our most dis-
ordered scenario should prove to be the most efficient way to
distribute rectifiers in a one dimensional system. Finally,
most of our results could apply for other types of rectifiers.
We have used a precise design of ES barriers as a combina-
tion of a trap and a reflecting barrier to explain the behavior
of the current and efficiency. However, our arguments are
based on the average spacing among rectifiers and the hitch-
hiker paradox and could be extended, with some modifica-
tions, to different types of pumps and ratchets. Work in this
direction is in progress.
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FIG. 5. The efficiency per load« vs t for a concentration of ES
potentialsc=0.2. Units of energy are such that the depth of the ES
wells is DV=1.
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